The double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site.
نویسندگان
چکیده
Poliovirus (PV) plus-strand RNA genomes initiate translation in a cap-independent manner via an internal ribosome entry site (IRES) in their 5' untranslated region. Viral translation is codetermined by cellular IRES trans-acting factors, which can influence viral propagation in a cell-type-specific manner. Engineering of a poliovirus recombinant devoid of neuropathogenic properties but highly lytic in malignant glioma cells was accomplished by exchange of the cognate poliovirus IRES with its counterpart from human rhinovirus type 2 (HRV2), generating PV-RIPO. Neuroblast:glioma heterokaryon analyses revealed that loss of neurovirulence is due to trans-dominant repression of PV-RIPO propagation in neuronal cells. The double-stranded RNA binding protein 76 (DRBP76) was previously identified to bind to the HRV2 IRES in neuronal cells and to inhibit PV-RIPO translation and propagation (M. Merrill, E. Dobrikova, and M. Gromeier, J. Virol. 80:3347-3356, 2006). The results of size exclusion chromatography indicate that DRBP76 heterodimerizes with nuclear factor of activated T cells, 45 kDa (NF45), in neuronal but not in glioma cells. The DRBP76:NF45 heterodimer binds to the HRV2 IRES in neuronal but not in glioma cells. Ribosomal profile analyses show that the heterodimer preferentially associates with the translation apparatus in neuronal cells and arrests translation at the HRV2 IRES, preventing PV-RIPO RNA assembly into polysomes. Results of this study suggest that the DRBP76:NF45 heterodimer selectively blocks HRV2 IRES-driven translation initiation in neuron-derived cells.
منابع مشابه
Internal initiation of translation from the human rhinovirus-2 internal ribosome entry site requires the binding of Unr to two distinct sites on the 5' untranslated region.
Internal initiation of translation from the human rhinovirus-2 (HRV-2) internal ribosome entry site (IRES) is dependent upon host cell trans-acting factors. The multiple cold shock domain protein Unr and the polypyrimidine tract-binding protein have been identified as synergistic activators of HRV-2 IRES-driven translation. In order to investigate the mechanism by which Unr acts in this process...
متن کاملunr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA.
Initiation of translation of the animal picornavirus RNAs occurs via a mechanism of direct ribosome entry, which requires a segment of the 5' UTR of the RNA, known as the internal ribosome entry site (IRES). In addition, translation of the enterovirus and rhinovirus (HRV) subgroups requires cellular trans-acting factors that are absent from, or limiting in rabbit reticulocytes, but are more abu...
متن کاملA peptide derived from RNA recognition motif 2 of human la protein binds to hepatitis C virus internal ribosome entry site, prevents ribosomal assembly, and inhibits internal initiation of translation.
Human La protein is known to interact with hepatitis C virus (HCV) internal ribosome entry site (IRES) and stimulate translation. Previously, we demonstrated that mutations within HCV SL IV lead to reduced binding to La-RNA recognition motif 2 (RRM2) and drastically affect HCV IRES-mediated translation. Also, the binding of La protein to SL IV of HCV IRES was shown to impart conformational alte...
متن کاملThe NF45/NF90 Heterodimer Contributes to the Biogenesis of 60S Ribosomal Subunits and Influences Nucleolar Morphology.
The interleukin enhancer binding factors ILF2 (NF45) and ILF3 (NF90/NF110) have been implicated in various cellular pathways, such as transcription, microRNA (miRNA) processing, DNA repair, and translation, in mammalian cells. Using tandem affinity purification, we identified human NF45 and NF90 as components of precursors to 60S (pre-60S) ribosomal subunits. NF45 and NF90 are enriched in nucle...
متن کاملCalicivirus translation initiation requires an interaction between VPg and eIF 4 E.
Unlike other positive-stranded RNA viruses that use either a 5'-cap structure or an internal ribosome entry site to direct translation of their messenger RNA, calicivirus translation is dependent on the presence of a protein covalently linked to the 5' end of the viral genome (VPg). We have shown a direct interaction of the calicivirus VPg with the cap-binding protein eIF 4 E. This interaction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 80 14 شماره
صفحات -
تاریخ انتشار 2006